

OpenVSP Workshop

Rob McDonald

NASA Ames August 23-25, 2016

Geometry as Origin of Analysis (Design)

- Shape is fundamental starting point for physics-based analysis
 - Aerodynamics
 - Structures
 - Aeroelasticity
 - Aerothermal / Heating
 - Mass Properties
 - Acoustics
 - RCS / Signatures
 - Packaging / Layout
 - Manufacturing
 - etc.
- Across disciplines and fidelity, shape is the common denominator.
- Unfortunately, there is little to no commonality in practice.

What is a circle (sphere)?

What is a circle (sphere)?

The locus of points equidistant from a given point (x_0, y_0, r) .

A circle is an idea.

Many approximate representations exist.

What is a circle?

What is a parameter?

A labeled quantity that is familiar to deal with:

Aspect Ratio

Taper Ratio

Thickness to Chord Ratio

Some parameters are dimensions with special names.

Sweep Angle

Wing Span

Familiar parameters correspond to *canonical* shapes.

Circle

Airfoil

Wing

+0.01 +0.01 Ø0.50 +0.01THRU Ø0.63 +0.01THRU 2X 0.25 What is a circle? What is a parameter? Is geometry a dimensioned drawing? Dimensions are parameters for arbitrary shapes. 2X 2.43 Ø1.63 +0.01 1.75 +0.01 0.25 X 45° Ø0.63 +0.01THRU 2X 0.25 2X RO.13 1.07 1.38 RO.50

Geometry Modeling Gap

Three approaches have evolved to geometry modeling for physics-based analysis.

- Analysis Integrated
 - Each code generates geometry based on its own inputs.

Parametric Geometry

- CAD Based
 - General-purpose CAD is used to model geometry.
 - Prepared for analysis through grid generation and pre-processing tools.

Geometry (Mis)Representation

'True' geometry does not correspond to analysis representation.

- CAD models can be built with varying (single) intent
 - Manufacturing
 - Represent manufacturing process, target CAM
 - Integration & Maintenance
 - Packaging, accessibility, etc.
 - Structures
 - Represent loads & load paths, target FEA
 - Many elements do not correspond to CAD model Beam, rod, shell, plate, etc.
 - Aerodynamics
 - Represent OML, propulsion, control surfaces

Analysis Fidelity Holes

Single model-to-analysis work flow typically developed.

- Fidelity selected (at least limited) by geometry model.
- Very little choice in analysis fidelity.
- Sparsely populated fidelity / discipline matrix.

Many Models Possible Representation of Geometry

Representation Relates to Fidelity

Often Mistaken for Design Stage

Phases of Aircraft Design

Design phase is about what decisions are being made, not how they are made.*

	Phase I	Phase II	Phase III	
	Conceptual Design Vs.	Preliminary Design Vs. Vs. 5° 5°	Detail Design	
Known	 Basic Mission Requirements Range, Altitude, Speed Basic Material Properties σ/ρ Ε/ρ \$.lb 	 Aeroelastic Requirements Fatigue Requirements Flutter Requirements Overall Strength Requirements 	Local Strength RequirementsProducibilityFunctional Requirements	
Results	GeometryDesign ObjectivesAir Foil Type R t/cDrag Level Weight Goals Cost Goals	Basic Internal Arrangement Complete External Configuration - Camber, Twist Distributions - Local Flow Problems Solved Major Loads, Stresses, Deflections	Detail Design	
Output	Feasible Design	Mature Design	Shop Drawings	
TRL	2-3	4-5	6-7	

Leland Nicolai, Fundamentals of Aircraft and Airship Design, AIAA, 2010. *Except where certain decisions require more advanced techniques.

Parameters Evolve Through Design

Shape Concept and Parameters 'are' Geometry

True through **entire** design process.

Conceptual

Preliminary

Detail

AR, S, Λ , λ , t/c

twist = $f(\eta)$, $t/c = f(\eta)$, Complex Planform, High-lift geometry, Control surfaces

Detailed part designs

General Concept

High-Level Finesse

Every Aspect Determined

Design phase is about <u>what</u> decisions are being made, not <u>how</u> they are made.

Vehicle Sketch Pad (VSP)

- Rapid parametric geometry for design
- NASA developed & trusted tool
 - JR Gloudemans Primary developer
- 2010 NASA Software of the Year Honorable Mention
- Released as Open Source Software (NOSA 1.3) January 2012
- Guidelines for improvement
 - Enable improved physics-based analysis
 - Support design and optimization
 - Maintain simplicity & "The VSP Way"

"The VSP Way"

Intuitive, Quick, Easy
First time users 'instantly' productive

Parametric geometry for design

Familiar to Aerospace & Designers
Wings, Fuselage, Nacelle
AR, Sweep, b, t/c, etc.

Real-time interactive response

Sliders vary parameters
Geometry updates interactively

Geometry represented by cartoon

Not actual wetted surface

Actual wetted surface generated on command

Agenda & Questions?

	8/23 Tuesday		8/24 Wednesday		8/25 Thursday	
8:00 8:30	Welcome & Overview	Rob McDonald	Automated FEM	Wu Li	Wave Drag	Rob/Michael
8:30 9:00	Intro to OpenVSP		Structural Modeling and OpenVSP	Trevor Laughlin	Drag buildup	Bryan Schmidt
9:00 9:30	Basic modeling	Brandon Litherland	TOW Steered Wing Structure Design	Mike Hensen	Aerodatabases with GoCart & Cart3D	_ ·
9:30 10:00	Tour of main components		OpenVSP Inertia Calculation	Mark McMillin	Aerodatabases with GoCart & Cart3D	Aerion
10:00 10:30			Break		Break	
10:30 11:00	Cal Poly NRA Final Review	Rob McDonald	RapidFEM & PBWeight	Tyler Winter	Projected Area	Rob McDonald
11:00 11:30	XSecs in detail	Brandon Litherland	VSPAERO Background	Dave Kinney	NDARC Integration	Travis Perry
11:30 12:00	USAF SBIR Report	Ben Schiltgen	VSPAERO GUI VLM Basics	Nick Brake	Aircraft design framework	Alessandro Silva
12:00 12:30	-					
12:30 13:00	Lunch		Lunch		Lunch	
13:00 13:30	NASA SBIR Report	Nick Brake	VSPAERO GUI VLM Advanced	Nick Brake	CompGeom and Meshing tutorial	Rob McDonald
13:30 14:00	Attach, symmetry, sets, subsurfaces	Rob McDonald	VSPAERO GUI Panel Method	Nick Brake	Flightstream	Roy Hartfield
14:00 14:30	Skinning explained	Rob McDonald	VSPAERO Test and Verification	Dave Kinney	Flightstream	Roy Hartfield
14:30 15:00	Break		Break		Break	
15:00 15:30	Advanced Wing Modeling	Rob McDonald	VSPAERO Next Steps	Dave Kinney	Design vars & xddm, API, Scripting	Rob McDonald
15:30 16:00	Conformal Components	J.R. Gloudemans	VSPAERO SUGAR braced wing aero	Doug Wells	Automation	Rob McDonald
16:00 16:30	Saved Parameter Settings	Bryan Schmidt	Advanced Parameter Linking	Rob McDonald	Fit Model Presentation	Rob McDonald
16:30 17:00	Modeling Demo	Rob McDonald	Leveraging DegenGeom	Erik Olson	Fit Model Interactive	Rob McDonald
17:00 17:30	Modeling Demo	Rob McDonald	Custom Components	Rob McDonald	Feedback session	
17:30 18:00						
18:00 18:30	BBQ social					

